

Increasing Robustness of Deep Network Model of Neurological Disease

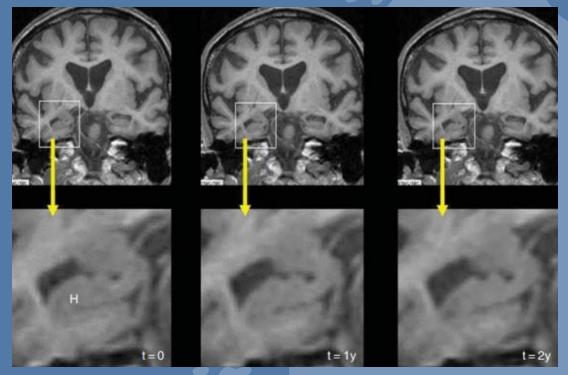
By: S. Yonamine, H. Y. E. Escudero, S.Tripathy, M. A. Raj, M.Turky R. Taghizadegan

Draniki Pod / Group 2

Currently more than

55,000,000

people live with dementia worldwide, and there are nearly 10 million new cases every year. Alzheimer's disease may contribute to 60-70% of cases.


NORMAL BRAIN

ADVANCED ALZHEIMER'S

MEDICALNEWSTODAY

HOW IS IT DIAGNOSED?

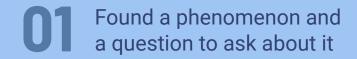
Atrophy in AD Progressive cerebral atrophy is a characteristic feature of neurodegeneration that can be visualized in life with MRI

WHY DEEP NEURAL NETWORK?

Deep neural networks are able to create deeper representations, at every layer, the networks learns a new, more abstract representation of the input.

While there are studies that a shallow network can fit any function, it will need to be really wide. That causes the number of parameters to increase a lot.

A technique to perform machine learning inspired by our own brain's own network of neurons.


The project aims at using a pre-trained Convolutional Neural Network (*EfficientNet B7*) to see if it can perform human expert-level diagnoses on *Alzheimer's disease* dataset and check if **regularization** and **data augmentation** methods could improve its performance.

The neural network was trained on the ImageNet Dataset and fine-tuned to a dataset of MRI images of Alzheimer's disease classified in different stages.

- Non-Demented
- Very Mild Demented
- Mild Demented
- Moderated Demented

Further, we proposed to work on **Variational Encoder** trained on the same data to generate new images from misclassified examples.

TIMELINE

03 Did transfer Learning with EfficientNet B7 pre-trained model

04

Regularization and Data Augmentation to improve the performance on misclassified data

METHODOLOGY PIPELINE

01

Select Neural Network computer vision model 02

Select database of neurological disease (Alzheimer's Disease)

03

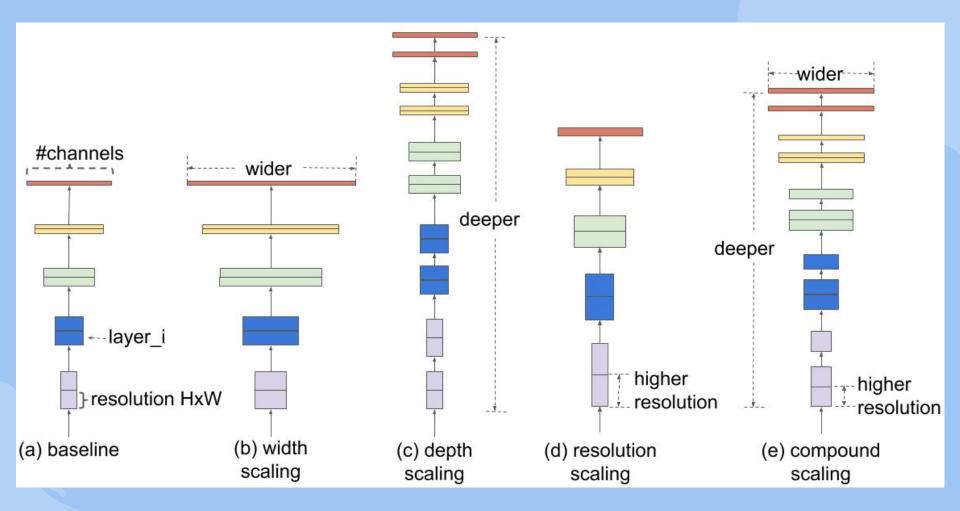
Refine weights of neural network model to the new database with a training set of images


04

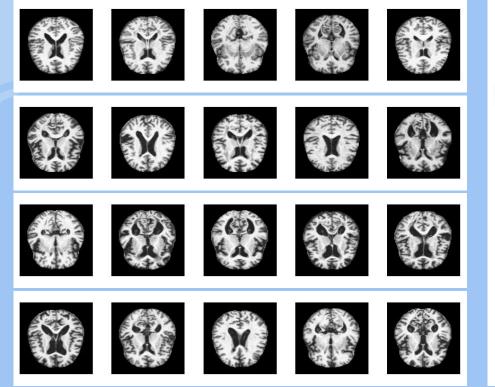
Output results of model on test set

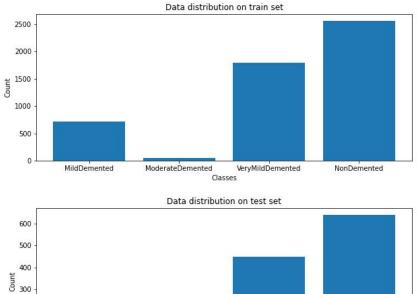
05

Investigate the misclassified images in the test set 06

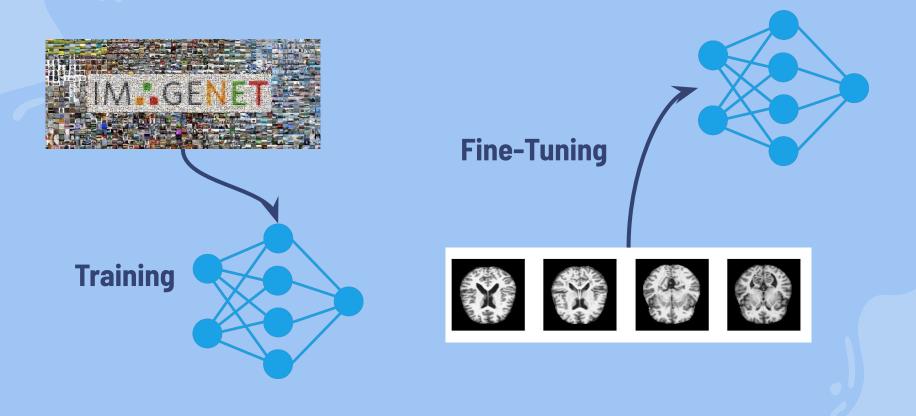

Things to ponder on later

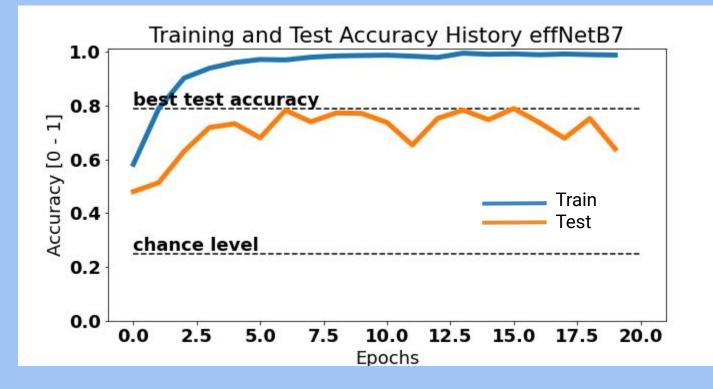
Methodology: Model Selection


Idea: take a pre-trained model and fine-tune on our data

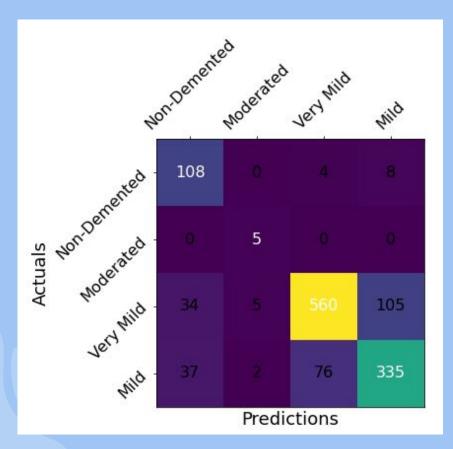

EfficientNet-B7 has few parameters, while achieving high accuracy in image classification (Imagenet)

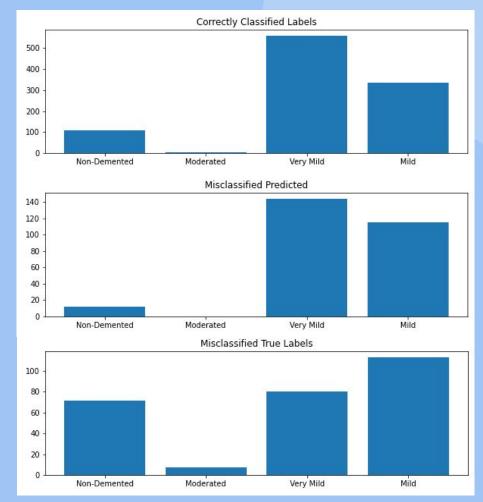
Methodology: Our Dataset


200 · 100 ·



MildDemented VeryMildDemented NonDemented Classes


Methodology: Fine-Tuning EfficientNet B7

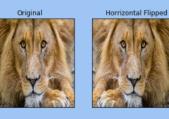


RESULTS: EfficientNet-B7 Validation

RESULTS: Misclassified examples

Pre-processing: Fitting the Biological data to Deep Neural Network

Image Processing: divided into: Interpolation to isotropic voxel spacing, Range re-segmentation and intensity outlier filtering (normalization), and discretization of image intensities inside the ROI/VOI.


Image segmentation: delineation of the region of interest (ROI) in two-dimensional (2D) or of the volume of interest (VOI) in three-dimensional (3D) approaches.

Feature Extraction:

where feature descriptors are used to quantify characteristics of the grey levels within the ROI/VOI. However, adherence to the (IBSI) guidelines is recommended

Deep Learning suggested solution: Data Augmentation

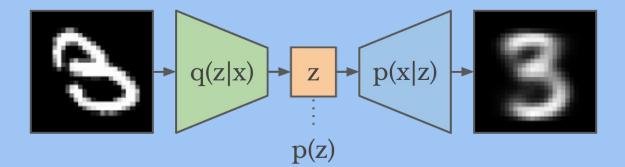
Image manipulations

+90 Rotation

-90 Rotation

+60 Rotation

Vertically Flipped


Brighter

Resized from 500X500 to 100X100

Darker

Image **Generation (VAE)**

Noise added

Use of Multimodal Data: building more reliable model

▲ ID =	≜ M/F =	≜ Hand =	# Age 😑	# Educ 🖃	# SES
0AS1_0001_MR1	F	R	74	2	3
0AS1_0002_MR1	F	R	55	4	1
0AS1_0003_MR1	F	R	73	4	3
0AS1_0004_MR1	М	R	28		
0AS1_0005_MR1	М	R	18		
0AS1_0006_MR1	F	R	24		
0AS1_0007_MR1	М	R	21		
0AS1_0009_MR1	F	R	20		
0AS1_0010_MR1	М	R	74	5	2
0AS1_0011_MR1	F	R	52	3	2
0AS1_0012_MR1	М	R	30		
OAS1_0013_MR1	F	R	81	5	2

Conclusion:

- The number of people who suffer from Alzheimer, Dementia and neurological diseases are increasing and early diagnosis allows us to access to broader types of treatment
- Segmenting the hippocampus region might help in improving the accuracy of the model
- We used a pre-trained light and high performance Convolutional Neural Network, fine-tuned in our dataset of Alzheimer's disease resonance images.
- Some images were misclassified, and we propose methods like a better pre-processing, image augmentation and use of multimodal data.

THANK YOU

seidi.yamauti@edu.isd.org.br

hannyamile@gmail.com

swarup.tripathy4810@gmail.com

menaturky@gmail.com

milananandraj1502@gmail.com

taghizadeganreihaneh@gmail.com

RESOURCES

- Johnson, K. A., Fox, N. C., Sperling, R. A., & Klunk, W. E. (2012). Brain imaging in Alzheimer disease. *Cold Spring Harbor perspectives in medicine*, 2(4), a006213. <u>https://doi.org/10.1101/cshperspect.a006213</u>
- Jo, T., Nho, K., & Saykin, A. J. (2019). Deep Learning in Alzheimer's Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data. *Frontiers in aging neuroscience*, *11*, 220. <u>https://doi.org/10.3389/fnagi.2019.00220</u>
- Hinrichs, C., Singh, V., Mukherjee, L., Xu, G., Chung M.K. and Johnson S.C., "Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset," Neuroimage, 48 (1), 138 –149 (2009). https://doi.org/10.1016/j.neuroimage.2009.05.056
- van Timmeren, J., Cester, D., Tanadini-Lang, S. et al. Radiomics in medical imaging—"how-to" guide and critical reflection. Insights Imaging 11, 91 (2020). <u>https://doi.org/10.1186/s13244-020-00887-2</u>

- Lyketsos, C. G., Carrillo, M. C., Ryan, J. M., Khachaturian, A. S., Trzepacz, P., Amatniek, J., Cedarbaum, J., Brashear, R., & Miller, D. S. (2011). Neuropsychiatric symptoms in Alzheimer's disease. Alzheimer's & dementia : the journal of the Alzheimer's Association, 7(5), 532–539. <u>https://doi.org/10.1016/i.jalz.2011.05.2410</u>
- Khan, S., Barve, K. H., & Kumar, M. S. (2020). Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer's Disease. Current neuropharmacology, 18(11), 1106–1125. https://doi.org/10.2174/1570159X18666200528142429